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1. Introduction 
During the past 20 years, progress has been made toward putting the theory of 
programming on a firm mathematical basis. McCabe [6] proposed that program 
complexity be measured by the cyclomatic number, which is one plus the number 
of decision nodes in the program flowchart. Studies have been done to determine 
how well such measures perform in practice [l] and to what extent they predict 
the number of programming errors [7]. 

In a much cited paper, Dijkstra [4] proposed that the GO TO statement be 
eliminated in high-level languages, since it allowed unnecessarily complicated 
program structures. It was suggested, rather, that transfer from one part of the 
program to another be done only through the use of a small set of constructs. One 
such set consists of the DO-WHILE, IF-THEN-ELSE, and SEQUENCE. Flow- 
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charts formed from these are called D-charts, after Dijkstra. Bohm and Jacopini 
[3] showed that any algorithm can be implemented as a D-chart. 

Knuth [5] and others have advocated less restrictive constructs to avoid addi- 
tional computation sometimes required by the constraints of D-charts. One less 
restrictive construct is the DO-WHILE with one or more midloop exits. Together 
with the IF-THEN-ELSE and SEQUENCE, these form the basis of the BJ,-charts, 
after Bohm and Jacopini. BJ,-charts form a hierarchy. That is, BJ,-charts include 
BJ,-,-charts, which, in turn, include BJ,-z-charts, and so on. At the lower end are 
the BJ,-charts, which are identical to D-charts. 

Although there is a better understanding of program structure and complexity, 
the full range of the programming process has not been explored. We believe that 
further progress depends on a better understanding of the universe from which all 
programs are produced. That is, when a programmer designs a program, a choice 
is made from the set of all programs. Thus, there is the question of whether a 
programmer produces programs that correspond to a random choice or whether 
there is a bias. Our results indicate the latter is true. 

We begin by enumerating BJ,-charts. It is shown that the number of n-node 
charts is approximately ~n-~‘~y”, where c and y are constants near 0.9 and 9, 
respectively. We show that, in large D-charts, approximately 56 percent of the 
decision nodes are IF-THEN-ELSE, while the remaining 44 percent are DO- 
WHILE. In large charts, where one or more midloop exits are allowed in DO loops, 
the converse is true; a larger percentage of nodes is DO-WHILE. We also investigate 
the composition of large flowcharts. That is, any flowchart corresponds to a 
sequence of basic charts, which are the IF-THEN-ELSE and DO-WHILE charts. 
It is shown that large flowcharts, on the average, consist of a small number (two or 
three) of basic charts. Long sequences (of more than eight basic charts) are very 
rare. 

2. Preliminaries 
A jlowchart is a directed graph where nodes represent code segments and arcs 
represent transfer of control. A decision node is a node with indegree 1 and 
outdegree 2, representing a code segment from which control proceeds to one of 
two points, depending on the value of a predicate. Figure la shows a decision node 
and Figure 1 b shows the representation used in this paper. 

Note that interchanging T (true) and F (false) in Figure la is identical to replacing 
P with its complement. Since all possible predicates are allowed, it is appropriate 
to just omit T and F, as is done in Figure lb. The other type of node, the 
reconvergent node, has indegree 2 and outdegree 1, as shown in Figure lc. It 
represents a code segment to which flow of control converges. We deal in this paper 
exclusively with one-input one-output flowcharts. It follows, therefore, that the 
number of decision nodes is identical to the number of reconvergent nodes. 
However, this paper focuses on the decision node and, from now on, the term 
node will refer to a decision node. 

2.1. D-CHARTS. D-charts are built up from smaller D-charts in one of three 
ways, as shown in Figure 2. Figure 2a shows the IF-THEN-ELSE construct. A 
chart of the form shown in Figure 2a is called an IF-THEN-ELSEflowchart, and 
17 is called an IF-THEN-ELSE node. Interchanging Gi and G2 leaves the chart 
unchanged, since it is the same as complementing the predicate at II. A flowchart 
of the form in Figure 2b is called a DO- WHILE flowchart and 7 is called a DO- 
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FIG. 2. The IF-THEN-ELSE, DO-WHILE, 
and SEQUENCE constructs. (a) IF-THEN- 
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WHILE node. Figure 2c shows the SEQUENCEflowchart, built up by concaten- 
ating IF-THEN-ELSE or DO-WHILE flowcharts. 

Definition 1. D-Chart: 

(1) A directed arc is a D-chart. 
(2) For h z 1, the SEQUENCE of Gr, GZ, . . . , Gh is a D-chart where Gi is an 

IF-THEN-ELSE or DO-WHILE chart with subcharts that are D-charts for 
lsish. 

Let the sequency of a D-chart be the value of h. It is convenient to let the 
sequency of a directed arc be 0. Charts of sequency 1 are precisely the IF-THEN- 
ELSE and DO-WHILE charts. All charts with 0, 1, and 2 decision nodes are shown 
in Figure 3. Figure 3a shows a chart with sequency 0, Figure 3b shows charts with 
sequency 2, Figure 3c single-node charts with sequency 1 and Figure 3d double- 
node charts with sequency 1. 

Not all flowcharts are D-charts. Figure 4 is not realizable as any combination of 
IF-THEN-ELSE, DO-WHILE, and SEQUENCE for any integer j > 1. 

2.2. BJ,-CHARTS. The construct shown in Figure 4 was introduced by Bohm 
and Jacopini [3] as a model for the midloop exit of a DO loop. A flowchart of the 
form shown is called a DO- WHILE- WITH-j-EXITSflowchart. 71, q2, . . . , l,lj are 
called DO- WHILE- WITH-j-EXITS nodes. Note that the DO-WHILE and DO- 
WHILE-WITH-1 -EXIT flowcharts are identical. 

Definition 2. BJ,,,-Chart (m a positive integer or ~0): 

(1) A directed arc is a BJ,-chart. 
(2) For h > 1, the SEQUENCE of G,, G2, . . . , G,, is a BJ,-chart, where each Gi is 

either an IF-THEN-ELSE chart with BJ,-subcharts or a DO-WHILE-WITH- 
j-EXITS chart (j 5 m) with BJ,-subcharts. 

The sequency of a BJ,-chart is 0 (respectively, h) if it satisfies Part 1 (respectively, 
2) of Definition 2. 
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8 
(b) 

FIG. 3. All D-charts with 0, 1, and 2 decision nodes. (a) Flowchart with 
sequency 0. (b) Flowcharts with sequency 2. (c) Single-node flowcharts with 
sequency 1. (d) Double-node flowcharts with sequency 1. 

FIG. 4. The DO-WHILE-WITH-j-EXITS construct. 

3. Flowchart Enumeration by Generating Functions 
Let fm( n) be the number of BJ,-charts with n decision nodes. For example, from 
Figure 3 we have for BJi = D-charts,f;(O) = l,f;(l) = 2, andfi(2) = 8. Let F,(x) 
be the generating function for BJ,-charts; that is, 

F,(x) = f&O) + fm( 1)x +&(2)x2 + . . . + fm( i)x’ + . . . , (1) 
where x is a formal variable. An expression for F,,,(x) will be obtained from 
ITE,(x) and DWW,(x), the generating functions for the number of BJ,-charts 
which are IF-THEN-ELSE and DO-WHILE-WITH-m-EXITS flowcharts, re- 
spectively. 

Consider DWW,(x) first. Distinct choices for G,, G2, . . . , Gj in Figure 4 result 
in distinct DO-WHILE-WITH-j-EXITS flowcharts. Thus, 

DWW,(x) = : xjFL(x). (2) 
j=l 
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Here, xjF’,(x) corresponds to the contribution of the DO-WHILE-WITH-j- 
EXITS flowcharts. F,,,(x) is the contribution from each of the subcharts, while xi 
is the contribution from the j decision nodes. From (2), 

DWW 
??I 

tx) = xJ’m(x)tl - x”FWN 
1 - xF,(x) ’ 

where x” is interpreted as 0. 
Consider ITE,(x). If distinct choices for subcharts Gi and GZ resulted in a 

distinct IF-THEN-ELSE flowchart, then ITE,(x) would be xF$(x). The gener- 
ating function for those charts with Gi = GZ is xF,(x’). Since interchanging G1 
and Gz produces the same flowchart, 

ITE,(x) = 
xF&(x) - xF,n(x’) + xF,(x’) = 

xF&(x) + xF,,,(x2) 
2 2 (4) 

Since a BJ,-chart is a SEQUENCE of some number i of IF-THEN-ELSE and 
DO-WHILE-WITH-m-EXITS flowcharts, the generating function for BJ,-charts 
can be written as 

Thus, 

F,,,(x) = i [ITE,(x) + DWW,(x)]‘. (5) 
i=O 

F,,,(x) = [l - ITE,(x) - DWW,(x)]-‘. 

Substituting (3) and (4) into (6) yields 

(6) 

xFf,,(x) xF,&?) _ xF (x) 1 - x”F:(x) -’ 
1 - --j--- - - 

2 m 1 - xF,,,(x) 1 (7) 

This function equation can be used to obtain the coefficients of F,,,(x) recursively, 
as follows. Let Pd(x) be a polynomial of degree d that agrees with F,,,(x) through 
terms of degree d. Using it in place of F,(x) in the right side of (7) and truncating 
at degree d + 1 produces Pd+l(x). 

Table I shows the results. It is interesting to note that, for a fixed 12, the number 
of n node BJ,-charts that are also BJmel is quite substantial for m > 2. However, 
as will be seen shortly, for a large enough n, BJ,-,-charts represent an arbitrarily 
small fraction of BJ,-charts. 

4. Asymptotic Approximations to the Number of BJ,,,-Charts 
In this section, we derive an asymptotic approximation for fm(n). We will use 
Theorem 5 of Bender [2]: 

THEOREM 1 [2, p. 5021. Assume the power series w(x) = C.rzo a,,x” with 
nonnegative coeficients satisfies G(x, w) = 0 in which w and x are related implicitly. 
Suppose there exist real numbers r > 0 and s > a0 such that 

(i) for some A > 0, G(x, w) is analytic for ] x ] < r + A and ] w ] < s + A, 
(ii) G( r, s) = G,( r, s) = 0, 

(iii) GX( r, s) # 0 and G,,( r, s) # 0, and 
(iv) if] xl I r, ] w ] _ -Z s, and G(x, w) = G,(x, w) = 0, then x = r and w = s. 

Then, 

4 - cn-3/2rn 
( 

i.e., lim .,..+p= 1 
) 
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TABLE I. THE NUMBERA OF BJ,,,-CHARTS VERSUS THE NUMBER n OF DECISION NODS 

f;(n) h(n) f3(n) h(n) Ii(n) f(n) 
n D= BJ, BJz BJs BJ4 BJs BJ, 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

I 
* 
i 

43 
258 

1,682 
11,529 
82,058 

600,320 
4,487,352 

34.120.28 1 

1 1 
2 2 
9 9 

53 54 
347 359 

2,463 2,584 
18,358 19,526 

141,959 153,026 
1,121,155 1,231,851 
9,150,633 10,126,949 

75.508.125 84.658.56 I 

1 
.l 

; ii 
54 54 

360 360 
2,598 2,599 

19,680 19,696 
154,602 154,793 

I ,247,453 1,249,517 
10,278,87 1 10,300,132 
86.124.597 86.338.009 

and 

1 
2 
9 

54 
360 

2,599 
19,697 

154,812 
1,249,770 

10,303,076 
86,370,016 

(9) 

(10) 

With w playing the role of F,,,(x) in (7), we have, 

x2w4 xw3 
G(sx, w) = x~+‘w”+~ + 2 - 2 

+ x2Kn(x2) 
( 2 

-2x w2+ 
) ( 

x&(x2) x+1-2 
) 

w- 1 =o. (11) 

Differentiating G with respect to w yields 

3xw2 G&y, w) = (m + 2)xm+‘wm+’ + 2x2w3 - y- 

xL(x2) + (x2Fm(x2) - 4x)w + x + 1 - - 
2 * (12) 

Given x = r and w = S, satisfying the conditions of Theorem 1, we have, 

G,(r, s) = (m + I)Ps~+~ + r.s4 - ; 

+ (r3F,‘,,(r2) + rFm(r2) - 2)s2 + Fm(r2) 1 - r2FL(r2) - 2 s (13) 

and 

G,,(r, s) = (m + 2)(m + 1)r “‘+‘.s”’ + 6r2s2 - 3rs + r2F,,,(r2) - 4r. (14) 

The values of r, S, F,( r2), and FL( r2) were found numerically as in [2, Example 
7.21, resulting in the asymptotic expressions for F,(n) shown in Table II. The error 
in the approximations for n = 10 ranges from 6.1 percent forJ;( 10) to 7.4 percent 
for&( 10). 



TA
BL

E 
II.

 
AS

YM
PT

O
TI

C
 

AP
PR

O
XI

M
AT

IO
N

S 
~o

f&
), 

TH
E 

AV
ER

AG
E 

N
U

M
BE

R
 

t(n
) 

O
F 

IF
-T

H
EN

-E
LS

E 
AN

D
 

D
O

-W
H

IL
E

-W
IT

H
-m

-E
X

IT
S

 
N

O
D

ES
, 

TH
E 

FR
AC

XI
O

N
 

p(
n)

 
O

F 
C

H
AR

TS
 

TH
AT

 
AR

E 
IF

-T
H

EN
-E

LS
E,

 
D

O
-W

H
IL

E
-W

IT
H

-m
-E

X
IT

S
, 

AN
D

 
HA

VE
 

SE
Q

U
EN

C
Y 

> 
1,

 A
N

D
 

TH
E 

AV
ER

AG
E 

SE
Q

U
EN

C
Y 

o,
,,(

n)
 

O
F 

FL
O

W
C

H
AR

TS
 

As
ym

pt
ot

ic
 

ap
pr

ox
im

at
io

n 
fo

r 
BJ

, =
 D

 
B

J2
 

B
J3

 
BJ

a 
B

Js
 

BJ
, 

M
n)

 
0.

38
88

rr
3’

*8
.8

49
” 

0.
38

63
r~

-“
~9

.5
94

” 
0.

38
28

r1
-~

‘~
9.

71
6”

 
0.

38
14

n-
3’

29
.7

38
” 

0.
38

10
n-

3’
29

.7
41

” 
0.

38
08

~~
-“

~9
.7

42
” 

W
E

(n
) 

0.
54

09
 

0.
46

13
 

0.
44

48
 

0.
44

 1
1 

0.
44

03
 

0.
44

0 
1 

m
&

n)
 

0.
45

9 
1 

0.
53

87
 

0.
55

52
 

0.
55

89
 

0.
55

97
 

0.
55

99
 

km
(n

) 
0.

20
15

 
0.

18
28

 
0.

17
94

 
0.

17
87

 
0.

17
86

 
0.

17
85

 
M

N
W

in
) 

0.
11

30
 

0.
14

23
 

0.
14

98
 

0.
15

16
 

0.
15

20
 

0.
15

21
 

rs
oc

Y
>l

(n
) 

0.
68

55
 

0.
67

49
 

0.
67

08
 

0.
66

97
 

0.
66

95
 

0.
66

94
 

4n
) 

2.
49

33
 

2.
44

22
 

2.
42

26
 

2.
41

72
 

2.
41

58
 

2.
41

54
 



544 

5. Properties of Large BJ,,,-Charts 

E. A. BENDER AND J. T. BUTLER 

In this section, we calculate how many nodes there are of various types, how many 
flowcharts there are with various sequences, and the average sequency of n-node 
flowcharts, where n + 03. In the following analysis, we consider generating functions 
A(x) with explicit representations. Thus, a special case of Darboux’s theorem 
(stated in [2, Theorem 41) will be useful. 

THEOREM 2 [2, p. 4981. Suppose A(x) = Et0 a,xn is analytic near 0 and can 
be written in theform 

( ) 

-W 
A(x) = h(x) + 1 - ; g(x), (15) 

where (Y is the only singularity ofA such that ] (Y ] < ] ,kI ] for all other singularities 
p of A(x). Further, ifg and h are analytic near (Y, w # 0, -1, -2, . . . , and g(x) # 
0, then 

(16) 

where I’(w) is the gamma function. 

Theorem 2 shows that the asymptotic behavior of coefficients of .x” in A(x) is 
determined by the singularity of least magnitude. 

In deriving Theorem 1, Bender [2, p. 5051 shows that w(x) has a power series 
expansion in powers of (1 - x/r)‘/’ near x = r beginning with 

(17) 

This applies to w = F,,,(x) by the result of the previous section. Near (x, w) = 
(r, s), G,(x, w) has a power series expansion beginning with 

G,(r, s) + G,dr, s)(x - r) + G&r, s)(w - s). (18) 

Combining (17), (18), and G,( r, s) = 0, we see that G,(x, w) has a power series 
expansion in (1 - x/r)‘j2 beginning with 

- (2rG,(r, s)Gww(r, s))“’ 1 - $ 
( ) 

l/2 
. (19) 

5.1. AVERAGE NUMBER OF NODES OF VARIOUS TYPES. Consider now the 
calculation of the average number of nodes of various types. Let q&n) and 
cDWW(n) be the fraction of nodes in n-node charts that are type IF-THEN-ELSE 
and DO-WHILE-WITH-m-EXITS, respectively. Since there are exactly two types 
of nodes. 

CITE(n) + mWW(n) = 1. (20) 

We solve first for CITE(n) and then use (20) to find cDww(n). Let F,,,(x, y) = 
C anpx”yp, where a, is the number of n-node flowcharts p of which are IF-THEN- 
ELSE nodes. If we differentiate F,(x, y) with respect to y, and set y = 1, we get 
Pm(x) = C(a,, + 2an2 + ... + na&x”. The coefficient of x” divided by the 
number of BJ,,,-charts with n nodes is the average number of nodes that are IF- 
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THEN-ELSE. Fm(x, y) satisfies the functional equation 

FAX, Y > 

l _ XYJ%X, Y) _ x~J’tn(x~> y2) 1 - x”‘Fm,(x, y) -I 
2 2 - xF,(x, Y) 

1 - xf’m(x, Y) 1 ’ (21) 

which has a form similar to (7) except that x in the factors corresponding to IF- 
THEN-ELSE nodes is replaced by xy. We have 

dFrn(x, Y) 
Pm(x) = dy 

N-T w) 
y=, = Gv(x, w)’ 

where 

N(x, w)=+f++ + x2P,(x2) w2 

- + x&(x2) 

(22) 

(23) 

and G,(x, w) is given by (12). By (19) and (22), the series expansion of Pm(x) in 
powers of (1 - x/r)“’ begins with 

-I/2 

. (24) 

By Theorem 2, (9), and (24), the average number of IF-THEN-ELSE nodes, 
n 6iTE( n) satisfies 

%TE(n) - - 
N( r, s)(2rG,( r, s)G,,( r, ~))-“~n-“~y~ 
( rG,( r, s)/2rG,,( r, s))‘/2n-3/2rnI’( l/2) 

Thus, 

NV, s) n 
- - rG,(r, s) ’ (25) 

CITE(n) - - 
WC s) 

rG(r, s) * 
(26) 

Table II shows E&n) and ~bww( n) = 1 - CirE( n) as n + 03 for the VaIiOUS 

flowcharts. It is interesting to note (by comparing D and BJ,) that allowing arbitrary 
midloop exits only increases the fraction of DO-WHILE-type modes by 10 percent. 

5.2. NUMBER OF IF-THEN-ELSE AND DO-WHILE-WITH-m-EXITS 
CHARTS. We turn now to the calculation of flowchart sequency. Recall that the 
sequency of a flowchart f is the number of IF-THEN-ELSE and DO-WHILE- 
WITH-m-EXITS charts concatenated to form f: First consider charts of sequency 
1. Such charts are of two types. The generating function of n-node IF-THEN- 
ELSE charts is given in (4). Using (17) and reasoning as before, we find that /.QTE( n), 
the fraction of charts that are type IF-THEN-ELSE is given as 

bTE(n) - KS. (27) 
In a similar fashion, pDww( n), the fraction of charts which are type DO-WHILE- 

WITH-m-EXITS can be derived from (3), yielding, 

m&n) - mr 
m+2sm+’ - (m + l)P+rY + r 

(1 - rs)2 (28) 
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Since PITE( n) and hDWW( n) account for all n-node flowcharts with sequency 1, 
the fraction of charts, PLSQCY,,( n) with sequency 2 or more is just 

PsQcY>l(n) = 1 - PITE(n) - PDWW(n). (29) 

Table 11 shows PCLITE(~), PDWW( n), and CCSQCY>I(~) as n+ to. SuTfisindY, mdPDWW 

is not close to fITE/EDWW. 

5.3. DISTRIBUTION OF FLOWCHARTS WITH RESPECT TO SEQUENCY. We extend 
these results to count the flowcharts with various sequencies. Specifically, the 
number of n-node BJ,-flowcharts with sequency h is the coefficient of x” in 

S(x) = [ITE,(x) + DWW,(x)lh. 

Let &,(n) be the fraction of n-node BJ,-charts with sequency h. Reasoning as 
before, 

&&n) - h 
[ 
; + !?+? + “‘: 

- py) IT-’ 

- rs 1 
mrm+2sm+1 - (m + l)rm+lsm + 

(1 - rs)2 

Table III lists the values of ah,(n) for n + 03, 1 I h 5 8, and m = 1, 2, 3, 4, 5, 
and ~0. 

Figure 5 shows a plot of&,,,(n) versus h for two flowchart classes, D = BJi charts 
and BJ,-charts. It can be seen from Table III and Figure 5 that the average sequency 
is between 2 and 3. These averages am(n), can be calculated by multiplying (30) 
by h and summing over h. The results are shown in Table II. 

6. Concluding Remarks 
We approach the problem of enumerating flowcharts from two points of view. In 
Section 3, generating functions are used to calculate the exact number of flowcharts 
with 1 to 10 decision nodes. In Section 4 we develop asymptotic approximations 
to the number of BJ,-charts and find that it grows as cnm312yn for large n, where c 
and y are constants. The error in the approximation is only 7 percent at n = 10. 

We observe that BJ,-r-charts represent a vanishing fraction of BJ,-charts as 
y1 + 00. This is in contrast to the case of small n (1 5 12 I 10). For example, for 
y1= 10, BJ2-charts represents 89 percent of the set of BJ3-charts. 

An analysis of the types of nodes in large charts shows, for example, that in 
D = BJ,-charts, IF-THEN-ELSE nodes represent about 56 percent of the total, 
while DO-WHILE nodes represent the remaining 44 percent. It is interesting to 
compare this with the fact that there are almost twice as many IF-THEN-ELSE 
charts as there are DO-WHILE charts. Thus, in a SEQUENCE of large D-charts, 
we would expect the node types that determine the subcharts to be distributed in 
a different proportion than the set of all nodes. 

Another characteristic investigated is sequency, the number of basic subcharts 
in a SEQUENCE that composes the flowchart. The average sequency is about 2.5. 
Thus, long chains of basic charts (IF-THEN-ELSE and DO-WHILE) are rare in 
structured flowcharts. 

We have observed that programmers tend to produce programs with large 
sequency. It would seem therefore that either 
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TABLE III. THE PROPORTION 6&n) OF BJm-C~~~~s FOR n --, 00 VERSUS SEQUENCY h 

b/II(n) 6/d(n) &3(n) &%(n) &Is(n) b-(n) 

Sequency h D=BJ, BJz BJs BJ4 BJs BJ, 

I 0.315 0.325 0.329 0.330 0.331 0.331 
2 0.216 0.219 0.281 0.281 0.281 0.281 
3 0.182 0.180 0.179 0.179 0.179 0.179 
4 0.107 0.103 0.102 0.102 0.102 0.102 
5 0.059 0.055 0.054 0.054 0.054 0.054 
6 0.031 0.029 0.028 0.028 0.028 0.028 
I 0.016 0.014 0.014 0.014 0.014 0.014 
8 0.008 0.007 0.007 0.007 0.007 0.007 

Average sequency cm 2.4933 2.4422 2.4226 2.4112 2.4158 2.4154 

Fraction 
of large 

Flowcharts 

4, Lo.3 

0.2 

0.1 

4 5 6 1 Sequency h 

FIG. 5. Asymptotic approximations to &i(n) and 6*,(n), the fraction of n- 
node flowcharts with sequency h, for D = BJi-charts and for BJ,charts, 
respectively: D = BJ,-charts, -; BJ,-charts, -. Note that pir~, ~OWW, 6hj, 

and 8,,- are the values to which IL&II), poww(n), &i(n), and &h=+(n) are 
asymptotically constant. 

(a) the programs we are solving are inherently sequential, or 
(b) IF-THEN-ELSE and DO-WHILE constructs are not enough to help us 

overcome our sequential organizational tendencies. 

A better understanding of these issues may have important consequences for the 
design of programming languages and our abilities to handle parallel processing. 
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